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Search for new Physics?

o No strong indications of new physics at the modern collider experiments.

o Indicate two possibilities: either the new physics is above the energy scale
accessible to LHC - the largest particle collider, or we have been looking at
the "wrong places”.

o Wrong places?

o Most BSM physics searches have been performed with the assumption that
the particles decay (promptly) near the primary interaction point of collider
experiments



Long Lived Particles (LLPs)

| Detector-Prompt c 3 g Detector-Stable
O LLPs: Particles that travel an observable distance from .| ¢ & @ = |
the primary collision point in particle detectors. Will | "=
have macroscopic proper lifetimes. 2 e
J" § o
o Long-lived particle signatures : Unexplored phase I . A -
space for BSM physics search, and requires a S B oSS oK
dedicated search . o o
E e
o As SM has LLPs (muons) no reason to exclude BSM R ertetime s

searches with LLP signatures!

Image from Ref[1]

[1] Lawrence Lee, Christian Ohm, Abner Soffer, and Tien-Tien Yu. Collider searches or long-lived particles beyond the standard model. Progress in Particle and Nuclear Physics, 106:210-255, may 2019.65
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Theoretical Motivation for BSM LLPs

Standard Model (SM) Dark Sector (DS)

Dark-Matter?

SUN,)

Mediator

o Extended SM with additional particles and forces collectively referred as
dark sector(DS).

o Weak coupling between SM and DS can give rise to LLPs
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Benchmark Model
BSM physics processes with LLP signature

O Production of dark quarks via Z’ (vector) mediator. Y

o Dark mesons travel sizeable distances ./%
(5mm-50mm) before decaying back to SM

O Leads to exotic LLP signature known as Emerging N\ ==

Jets (EJs) with with unique signature — smoking AR
gun for BSM physics. g )
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ATLAS Detector

Intro
Bunch
o Bunches of protons are accelerated almost at the ——
speed of light and collided at LHC, such at there are
40,000,000 interactions per second. Parton

(quark, gluon)

Particle

o A general purpose detector at LHC, ATLAS “detects”
collision remnants.

Detector
signature




o0 Measures direction, momentum and charge of charged particles.

o Is made up of Pixel Detector, Semiconductor Tracker (SCT) and
Transition Radiation Tracker (TRT)
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o Measures eergy of particles by absorbing them.

o |s made up of Electronic Calorimeters(ECAL) and Hadronic
Calorimeters (HCAL)



o Magnet system bends the trajectory of charged particles to measure
momentum and charge.
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ATLAS: Muon Spectromeigke=

o0 Measures momentum of muons as they escape the calorimeter without

being absorbed.
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Particle Signatures in ATLAS

Image: Heather Russel

o Particle identification involves reconstructing the trajectory of charged particles in
the 1D, reconstruction of the jets from the calorimeters .. and so on.

o Tracks are the paths traced by charged particles as they move through the ATLAS
detector.

o Jets are collimated sprays of particles produced when quarks and gluons
(partons), ejected from the proton-proton collisions, undergo hadronization.
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Tracking: Charged particle trajectory reconstruction

Pierfrancesco Butti
o Form seeds using three hit groups (space points)
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Track reconstruction efficiency

Large Radius Tracking (LRT)
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o Tracks inside EJs are from LLP particle decay. Standard
tracking (ST) cannot reconstruct those tracks efficiently.
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O LRT run after ST and manages to retain substantial
efficiency unto transverse impact parameter < 300 mm
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Jets Reconstruction

p, [GeV] anti-k,, R=1
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Figure A sample parton-level event clustered with the anti-kt algorithm used to recon-
struct jets with R=1.

o First, calorimeter cells are grouped into three-dimensional clusters (topo-clusters)
using the nearest-neighbour algorithm.

o Then clusters are merged based sequential recombination algorithm (anti-kt),

meaning it builds jets by iteratively merging particles based on a specific
distance metric.



Emerging

Emerging Jets in ATLAS detector

Displaced tracks

O EJ’s are BSM LLP signature! Secondary Vertex/
Displaced vertex

® EJs are jets with many
displaced tracks and
displaced vertices.

e Difficult to identify!

® Calorimeter signature looks
similar to a QCD jet

Primary Vertex

® Need to use the displaced
tracks and vertices to
identity the EJ using
conventional methods mage: Heather Russel
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Graphs

O Agraph, & = (7', &) is COLLECTION of nodes 7" = {v{, v,, ..., Vv, }Jand
edges& C 7 X 7.

o Nodes are often used to represent multi-dimensional feature-vectors. Feature
vectors are numerical representations of data entities and denoted as

x,forue 7



GNNS

GNNs

concat/avg

Transformation of node feature vector h | into

>

h | by using neighbourhood feature vectors .

o Optimizable transformation on graph attributes such as nodes and edges.

O For example, transformation’s of node representation 4 | to h ;through a weighted aggregation of its
neighbour’s representation, where the weights are derived from attention mechanism, a(x,, X,).

° h, =¢ <x a(x, Xv)l//(xv)) where (X)) = WX,

veN
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GNNs for Emerging Jets Analysis (Run 03)

o GNNs can handle large sized inputs because of permutation symmetry.

o EJs have large number of tracks inside them

o As EJs are difficult to identify using conventional methods, GNNS

facilitate the use of several low level track input variables.

o GNNs handle irregular sized inputs

o Number of tracks in EJ is not fixed, therefore well suited

s i
-~
\\- o GNNs exploit relationship between data entity
/

o Tracks in EJ exhibit rich relations due to the presence of multiple displaced

vertex and displaced tracks
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Classification tasks

/

Graph Classification
*@o@o@o) cxy-

Node Classification

19

Track Class 1

Classifier Track Class 2
9 Track Class 3

Track Class 4

\ \ |
\ Edge Classification

. . Classifier

D —

Final Jet Representation



Normalised number of tracks

Input Variables
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16 track variables including track parameters in ATLAS tracking system, detector hits and holes variables,
uncertainty in track parameters ... (detailed in backup slides)

Most discriminating ones include

- dyy: Distances of closest approach between the track
- IP3D_signed_dO_significance: Ratio of djy and o(d,)) defined for both positive and negative scale with
reference to the primary interaction point of the ATLAS detector

- ;Track charge divided by momentum (measure of curvature)
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Results from Performance of GNNS in Vertex Classification

Edge Classification

‘ ‘ Classifier Probability of having common vertex
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Vertex Performance: EfflClency

True track sets T

— GN2 7
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Ae these uentex effjiciently neconstructed?

o Efficiency: Per-vertex fraction of tracks in the truth-vertex which are included
In @ common reco-vertex!

o GNNs have higher efficiency then VSI



Vertex Performance: Purlty

True track sets

- 1
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Fow “PUBE" ane these groupings?

o Purity: Per-vertex fraction of tracks in the reconstructed vertex which are from
the same truth vertex.

o GNN predicted vertex and VSI have similar purity.



Vertex Performance: NumVertex Dist.

True track sets

= - Z

Counts
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o Emerging jets, by definition, has multiple vertices in a jet.

o Number of vertex in per jet distribution shows jet topology identified by

GNN closer to the truth.

24
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Number of vertices in a jet



Results from Performance of GNNS in Track Classification

Node Classification Pileup

Fake

Classifier

—

Primary

Displaced

o Pileup: From additional proton-proton interactions that occur within the same
bunch crossing

o Fake: From purely combinatorial collections of hits
O Primary: From Primary Vertex

o Displaced: From Secondary vertices
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GNNs Performance Track Origin Classification (ROC)

True Positive Rate
o
(@)
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Work in progress

—— Pileup (AUC = 0.984)

—— Primary (AUC =0.982)
—— Displaced (AUC = 0.983) |

Fake (AUC = 0.950)

0.0

False Positive Rate

0.2 0.4 0.6

0.8

1.0

o Highly effective in classifying tracks!

o Displaced tracks classification AUC: 0.983!
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o FPR: proportion of actual negatives that are
incorrectly identified as positives

o TPR: proportion of actual positives that are
correctly identified



Results from Performance of GNNS in EJ Classification

Graph Classification

@.@.@.@ CIas_s)ifier

Emerging Jet
QCD Jet
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Normalised number of jets

Jet Classification: Probability Distribution

Probability Distribution True EJ
o°F L Siglgnalljetsl | H
--=-- Background jets
107 F \\
107 F E '
| \\ :: 4 i : a5 o5y [ ‘

O.8GNN Scor1e-0 PrObablllty EJ —_ 0.9 PrObabiIity EJ — 0.2

o Two categories: Signal Jets (E/s) from long lived dark mesons and background Jets from QCD
background process!

o EJ probability(GNNScore) distribution.

o Signal jets peaks at last bin suggesting extremely high likelihood for majority of signal jets to
be correctly identified!
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Background rejection

Jet Classification: ROC
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Signal efficiency

o Extremely good classifier with great background
rejection while retaining majority of the signal.

O This implies that within a threshold where 80 % of
the signal jets are accurately identified, there is a

misclassification of 1 jet for every ~ 10% jets.
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GNN in EJ (Run 03) Analysis

Selection: Trigger OR
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o Requiring two jets to have GNN score > 0.995 gives significant background
reduction with high signal efficiency!
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Conclusion

o Use of GNNs are very effective in classifying atypical LLP signature- emerging jets.

o Additionally GNNs were also able to perform classification of tracks inside the
jet and find of pair of tracks belong to the same vertex.

ThankYow!
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ATLAS Detector

» Straw tracker + Transition
Radiation

* 4mm diameter straws with
35 uym anode wire

« Layers: 73 in Barrel (axial)
2x160 in Endcap (radial)

* 3 layers in Barrel and
Endcap

+ Pixel size 50 x 400 pm

* Resolution 10 x110 ym

» 80 M channels 33




ATLAS simulation 2010 ATLAS simulation 2010
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https://arxiv.org/abs/1603.02934

GNN generalizations
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Internal component of GNNs



Equivariance Invariance

J(PX) = Pf(X) JPX) = f(X)

36



GNN Architecture

Track inputs Combined Inputs

Pooled graph
GNN representation

or‘

p_disp jet
p_prompt jet

*

Graph
Network

TrackOrigin

Jet inputs

Track
Initialiser

—»

Node
Network

> i

probablity

Njf scores

Combined Intial track
Inputs representation

Conditional track \
representation

Ntracks X Nif Ntracks X (Njf + Nis)

Vertex
probablity
scores

b

Network

Fig4 : GNN Architecture

Combined input prepared and fed into network architecture (2 jet variables 16 track variables)

Initial latent representation for each track created. These representations are then used to populate the
node features of a fully connected graph network

Message passing graph neural network’s loss function also accounts node and vertex classification loss
function.

After the graph network, the resulting node representations used to predict Track Label
(truthOriginLabel), JetLabel (isDisplaced) probability score.

Architecture based on the ATLAS Flavour tagging software!

4: http://cds.cern.ch/record/2811135/files/ATL-PHYS-PUB-2022-027.pdf 37



https://hrussell.web.cern.ch/hrussell/graphics.html
http://arxiv.org/abs/2107.06092

QCD
Ld40_rho80_pi20_Zp600_I50
Ld10_rho20_pi5S_Zp600_I5
Ld10_rho20_pi5_Zp1500_I50
| Ld20_rho40_pi10_Zp3000_I50

Samples Used for Training EJ classifier

o | d = dark confinement

scale [GeV]

erho = mass of rho meson

[GeV]

e pi = mass of dark pion

[GeV]

e /p = mass of Z' [GeV]
| = lifetime [mm]



Jet-Track Inputs

IP3D_signed d0_significance

IP3D_signed z0 significance

Category | Variable Description
Jet pT Jet transverse momentum
n Signed jet pseudorapidity
Track do Distances of closest approach be-
tween the track and beamline in the
transverse plane
zpsin @ Closest distance from the track to
the primary interaction point in the
transverse plane
dy Azimuthal angle of the track, rela-
tive to the jet ¢
dn Pseudorapidity of the track, relative
to the jet n
% Track charge divided by momentum
(measure of curvature)
o(¢) Uncertainty on track azimuthal an-
gle ¢
a(0) Uncertainty on track polar angle 6
o %) Uncertainty on 19)
nPixHits Number of pixel hits
nSCTHits Number of SCT hits
nPixShared Number of shared pixel hits
nSCTShared Number of shared SCT hits
nPixHoles Number of pixel holes
nSCTHoles Number of SCT holes

Ratio of dyp and o(dp) defined for
both positive and negative scale
with reference to the primary inter-
action point.

Ratio of zpsin(f) and o(zysin(6))
defined for both positive and neg-
ative scale with reference to the pri-
mary interaction point

39
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Input Variables: Jets
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» Two jet variables that constitute the basic kinematics of a jet pr, i1

* Jo avoid avoid kinematic biases for jet tagger, the distributions are

“resampled”, i.e ensure uniformity in the kinetic distribution!
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Normalised number of tracks

S: Tracks
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do gOverP

* 16 track variables including track parameters in ATLAS tracking system, detector hits
and holes variables, uncertainty in track parameters ... (detailed in backup slides)

track

 Most discriminating ones include

* - d,: Distances of closest approach between the track

- IP3D_signed_d0_significance: Ratio of djy and 6(d);) defined for both positive and
nquative scale with reference to the primary interaction point of the ATLAS detector

" Track charge divided by momentum (measure of curvature)
41




Normalised number of tracks

Normalised number of tracks

Normalised number of tracks
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Track Origin Identification: Performance

Confusion Matrix

* The diagonal elements of the matrix
represent correct classification!

* Pileups and Displaced tracks most
accurately classified

o« ~20k “true” displaced tracks
classified as pileups and vice
versa!

 ~16k “true” primary tracks
classified as pileups

Work in progress

)] 622647 1 4788 19085 -
1~ 98 1 34 16—
o k
O
©
o)
-
=t i
2 15798 1 3e+04 2283 —
3 2e+04 0 1302 145907 —
_IIIIIIIIIIIIIIIIIII_
0 1 2 3

Predicted label

43

600000

500000

400000

- 300000

- 200000

- 100000

0



JetMatrixView

* 40 tracks x 40 tracks confusion matrix
* |nstead of being sorted by tracklD’s its sorted by truthVertexld of each track
 For example {Trackld(Vertexld)} in a Jet is {2223(1),2224(3),2225(1),2226(2)}

Track ID Based Sort VertexID Based Sort

2223|2224 | 2225 | 2226 2223|2225 | 2226 | 2224
2993 | A 0 1 0 2223 1 1 0 0
29941 0 1 0 0 * 2225 1 1 0 0
2905 | 1 0 1 0 2226 0 0 0 0
29961 0O 0 0 1 2224 0 0 0 0
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Jet View from Classifiers!

Use GNN to classify events? ATLAS Work in progress

* True labels vs GNN ~ 4 N N~ R
predicted labels N 1 N N o N
visualization for jet, track ;.. ol N dN SN
and vertex prediction ) J . '-.l. : - S

* n,, X n,, matrix sorted by © ° .. * *

TrUt hve rt I D o Truth Labels ‘ - Truth Labels 0 -.... ''''' S— - Truth Labels
« 1 (Black) if two tracks .| ™. j .
share the same vertex <: '~.... - . L
; : ” .
* 0(White)iftwotracks "L & °| .\-. ) —
do not share a common .
Track Label
Vertex acI:DiIe:p ef
Fake
Primary e
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GNN Validation

Selection: Muon Trigger, NLl =1, Niet =2

N RESSMMMMAAA AL BLELELILN LR BRI RLELRLELE I
S - Work in progress Wi
> 1 E Vs=13.6TeV,27.0fb™" W-light —=
L = °® data 3
45 sy, MC Stat. Unc. .
S 4 ]
= 10 _E
S ¢
L
1072
107°
107
2 C 3
Q 1.5 - :
. . , Z «
S 1 Pt IO AP e
S - ’ .
O 05F -

Leading jet GNN score

* First looks at 2022 data validate GNN
performance on real data!
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