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INTRODUCTION

* A jet dominantly composed of displaced tracks

and containing many displaced vertices within

the jet cone.

Graph Neural Network(GNN)
e Special type of neural network designed to operate on graph-structured data

Figure 1: A schematic depiction of pair
production of dark quarks forming two
emerging jets [1]

e Each node of the graph is populated with feature vectors.

 GNN propagates and updates the graph representations via the “message

passaging”’ mechanism.
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MOTIVATION

Jet Analysis (Run 3)

e Extensions to Standard Model predict existence
of strongly-interacting dark sectors.

e Depending upon the parameters of dark sector
one potential signature could be “emerging jet”

e Problems in particle physics involve data in the
form of unordered sets with rich relations and interactions, which can

naturally be represented as graphs!
* GN1 - GNN-based flavour tagging algorithm deployed in ATLAS and
significantly outperforms previous taggers.

METHODOLOGY

e Signal: Mixture of models with emerging jets which are mostly “displaced”
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Figure 3: Network architecture of GNN
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2 J. Barr et al., “Umami: A Python toolkit for jet flavour tagging in the ATLAS experiment”
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Figure 2: Displaced and Visibility nature of jets,
Diagram credit - Caterina Doglioni and Hamza Hainf

e Use the architecture of GN1, to tag emerging jets with intricate topology.
» Can also classity displaced tracks and vertex within the jet cone.

e Background: Dijet samples (JZ2 - JZ9) with prompt jets.
 Input variables: 2 jet variables (p, 17) and 16 other track variables.
 Framework: FTAG frameworks (UMAMI [2], Training Dataset Dumper) to

create training, testing and validation files.

Pooled graph
representation x
-g ° \(Jet clast?
— —_— | promp
_ 5 % a displaced)
/ 2 predictions
E4
25 .
— —_| 3 z |—> Track origin
=E predictions
o %‘ Vertex
— -u.':’ 2 |— predictions
(]
2

 Combined (track+jet variables) input 1s used to create an initial latent
representation that populates node features of fully a connected graph [3].
e The neural network is trained (on SALT framework) by minimizing the

+alL, ..+ PL,,,.» Where a, f are weight

. 18 track origin identification

1s binary track-pair compatibility loss averaged over all
o After Graph Network, the resulting node representation is used to predict

the jet class (Displaced/Prompt), track origins (Pileup, Fake, Primary,
Displaced),and track-pair vertex compatibility.

1 P. Schwaller, D. Stolarski, and A. Weiler, “Emerging Jets,” J. High Energ. Phys. 2015

RESULTS

Jet Tagging
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Figure 4: Distribution GNN score for prompt and displaced jets

Clear separation between signal and background jets with high efficiency.

Figure 5: ROC curve for jet classification

Track Origin Identification

12 I : : Il I : .I : I : : : I : : : I : : : I 1 .I I 1 1 .I 1 I 1 1 1 1 I 1 1 600000
- ATLAS Simulation Internal Simulation_Internal
)] 622647 1 4788 19085 —

1.0 N 500000
o 08[ ’ 1L o8 1 34 16 - 400000
e © |
E <
2 0.6 . ) 300000
o >
o |: »

E ol 15798 1 3e+04 2283 -
04 . B - 200000
—— Pileup (AUC = 0.984)
0.2 —— Fake (AUC = 0.950) . i - 100000
—— Primary (AUC = 0.982) ] 3+ 2e+04 0 1302 145907 —
i —— Displaced (AUC = 0.983) | I
0.0 L L L | L L L | ! ! | i i | 1 1 1 | 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 0
0.0 0.2 0.4 0.6 0.8 1.0 0 1 2 3
False Positive Rate Predicted label
Figure 6: ROC curve for track origin identification gfll:lr:r;i(Zjogiij?nlm;ti’;;f_t;“k origin. Track labels are: Displaced - 3,
* Displaced tracks in the jet were 1dentified efficiently!
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Figure 8 : Comparison of GNN (GN2) with VSI (VertSecInlcusive) algorithm on various performance metrics

Note: Results are based on vertex-finding and not vertex-fitting

e Per-vertex fraction of tracks in the reconstructed vertex which are from the
same truth vertex.

e Per-vertex fraction of tracks in the truth-vertex which are included in a
common reco-vertex.
e GNN has higher vertex reconstruction efficiency for similar purity.

CONCLUSION
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Figure 9: Distribution of jet GNN score in signal and background (Left), Number of jets with GNN score > 0.995 (Right)

» Using GNN score, 1t's possible to have significant background reduction. In
particular, requiring 2 jets to have GNN score > 0.995 yields near 100% signal
efficiency for some model.

* GNN can also efficiently reconstruct displaced vertices inside EJ’s.

3 ATLAS Collaboration, “Graph Neural Network Jet Flavour Tagging with the ATLAS Detector”, ATL-PHYS-PUB-2022-027 (2022).



