Tagging Emerging Jets using Graph Neural Networks

MSc Defence

Candidate **Paras Pokharel** MSc student @ SFU 16 April 2024

SEU

Committee **Dr. Andrei Frolov (Chair) Dr. Dugan O'Nei (Internal examiner) Dr. Matthias Danninger (Supervisor, Member Dr. Bernd Stelzer (Member)**

Search for new Physics?

- No strong indications of new physics at the modern collider experiments.
 - Indicate two possibilities: either the new physics is above the energy scale accessible to LHC - the largest particle collider, or we have been looking at the "wrong places".
 - Wrong places?
 - Most BSM physics searches have been performed with the assumption that the particles decay (promptly) near the primary interaction point of collider experiments

Long Lived Particles (LLPs)

- LLPs: Particles that travel an observable distance from the primary collision point in particle detectors. Will have macroscopic proper lifetimes.
- Long-lived particle signatures : Unexplored phase space for BSM physics search, and requires a dedicated search
- As SM has LLPs (muons) no reason to exclude BSM searches with LLP signatures!

Image from Ref[1]

Theoretical Motivation for BSM LLPs

dark sector(DS).

• Weak coupling between SM and DS can give rise to LLPs

• Extended SM with additional particles and forces collectively referred as

Benchmark Model BSM physics processes with <u>LLP signature</u>

- Production of dark quarks via Z' (vector) mediator.
- Dark mesons travel sizeable distances (5mm-50mm) before decaying back to SM
- Leads to exotic LLP signature known as Emerging Jets (EJs) with with unique signature \rightarrow smoking gun for BSM physics.

$$\mathcal{L}_{\rm med} = -\frac{1}{4} Z'^{\mu\nu} Z'_{\mu\nu} - \frac{1}{2} M_{Z'}^2 Z'^{\mu} Z'_{\mu} + Z'_{\mu} (\bar{q'_i} \gamma^{\mu} Z'_{\mu\nu} - \frac{1}{2} M_{Z'}^2 Z'^{\mu\nu} Z'_{\mu\nu} + Z'_{\mu\nu} (\bar{q'_i} \gamma^{\mu\nu} Z'_{\mu\nu} - \frac{1}{2} M_{Z'}^2 Z'^{\mu\nu} Z'_{\mu\nu} - \frac{1}{2} M_{Z'}^2 Z''_{\mu\nu} Z''_{\mu\nu} Z''_{$$

ATLAS Detector Intro

• Bunches of protons are accelerated almost at the speed of light and collided at LHC, such at there are 40,000,000 interactions per second.

• A general purpose detector at LHC, ATLAS "detects" collision remnants.

ATLAS: Inner Detector (ID)

• Measures direction, momentum and charge of charged particles. • Is made up of Pixel Detector, Semiconductor Tracker (SCT) and Transition Radiation Tracker (TRT)

ATLAS: Caloriemeters

• Measures energy of particles by absorbing them.

• Is made up of Electronic Calorimeters(ECAL) and Hadronic Calorimeters (HCAL)

absorbing them.

ATLAS: Magnet System

• Magnet system bends the trajectory of charged particles to measure momentum and charge.

being absorbed.

• Measures momentum of muons as they escape the calorimeter without

Particle Signatures in ATLAS

- the ID, reconstruction of the jets from the calorimeters .. and so on.
- detector.
- Jets are collimated sprays of particles produced when quarks and gluons

Image: Heather Russel

• Particle identification involves reconstructing the trajectory of charged particles in

• **Tracks** are the paths traced by charged particles as they move through the ATLAS

(partons), ejected from the proton-proton collisions, undergo hadronization.

Tracking: Charged particle trajectory reconstruction

• Form seeds using three hit groups (space points)

• Extend the seeds with additional space points using recursive algorithm

• Fit and score the track candidates using χ^2 and other metrics. Discard

bad track candidates based on the score.

• Extrapolate the track candidates to TRT

• Refit with all points and score the track candidate. Also discard candidate with bad score

• Form TRT track segments are that extended back to the silicon layers

Large Radius Tracking (LRT)

• Tracks inside EJs are from LLP particle decay. Standard tracking (ST) cannot reconstruct those tracks efficiently.

• LRT run after ST and manages to retain substantial efficiency unto transverse impact parameter < 300 mm

Jets Reconstruction

Figure struct jets with R=1.

- using the nearest-neighbour algorithm.
- Then clusters are merged based sequential recombination algorithm (anti-kt), meaning it builds jets by iteratively merging particles based on a specific distance metric.

A sample parton-level event clustered with the anti-kt algorithm used to recon-

• First, calorimeter cells are grouped into three-dimensional clusters (topo-clusters)

Emerging Jets in ATLAS detector

• EJ's are BSM LLP signature!

- EJs are jets with many displaced tracks and displaced vertices.
- Difficult to identify!
 - Calorimeter signature looks similar to a QCD jet
 - Need to use the displaced tracks and vertices to identify the EJ using conventional methods

Displaced tracks.

Secondary Vertex/ **Displaced vertex**

Image: Heather Russel

edges $\mathscr{E} \subseteq \mathscr{V} \times \mathscr{V}$.

 Nodes are often used to represent multi-dimensional feature-vectors. Feature vectors are numerical representations of data entities and denoted as $\mathbf{X}_{\mathbf{u}}$ for $\mathbf{u} \in \mathcal{V}$

• A graph, $\mathscr{G} = (\mathscr{V}, \mathscr{E})$ is COLLECTION of nodes $\mathscr{V} = \{v_1, v_2, ..., v_n\}$ and

• Optimizable transformation on graph attributes such as nodes and edges.

• For example, transformation's of node representation \vec{h}_1 to \vec{h}'_1 through a weighted aggregation of its neighbour's representation, where the weights are derived from attention mechanism, $a(\mathbf{x}_u, \mathbf{x}_v)$. • $\mathbf{h}_u = \phi \left(\mathbf{x}_u, \prod_{v \in \mathcal{N}_u} a(\mathbf{x}_u, \mathbf{x}_v) \psi(\mathbf{x}_v) \right)$, where $\psi(\mathbf{x}_v) = \mathbf{W} \mathbf{x}_v$

Transformation of node feature vector \vec{h}_1 into \vec{h}_1' by using neighbourhood feature vectors .

GNNs for Emerging Jets Analysis (Run 03)

- EJs have large number of tracks inside them
- As EJs are difficult to identify using conventional methods, GNNS
 - facilitate the use of several low level track input variables.
 - GNNs handle irregular sized inputs

- GNNs exploit relationship between data entity
- Tracks in EJ exhibit rich relations due to the presence of multiple displaced
 - vertex and displaced tracks

• GNNs can handle large sized inputs because of permutation symmetry.

• Number of tracks in EJ is not fixed, therefore well suited

Classification tasks

tex	
ertex	

0 uncertainty in track parameters ... (detailed in backup slides)

- Most discriminating ones include 0
- d_0 : Distances of closest approach between the track 0 reference to the primary interaction point of the ATLAS detector $-\frac{q}{r}$ Track charge divided by momentum (measure of curvature)

16 track variables including track parameters in ATLAS tracking system, detector hits and holes variables,

- IP3D_signed_d0_significance: Ratio of d_0 and $\sigma(d_0)$ defined for both positive and negative scale with

Results from Performance of GNNS in Vertex Classification

Edge Classification Classifier

Probability of having common vertex

Vertex Performance: Efficiency

Emerging Jet

Are these vertex efficiently reconstructed?

- in a common reco-vertex!
- GNNs have higher efficiency then VSI

• Efficiency: Per-vertex fraction of tracks in the truth-vertex which are included

- the same truth vertex.
- GNN predicted vertex and VSI have similar purity.

• Purity: Per-vertex fraction of tracks in the reconstructed vertex which are from

Vertex Performance: NumVertex Dist.

- Emerging jets, by definition, has multiple vertices in a jet.
- Number of vertex in per jet distribution shows jet topology identified by GNN closer to the truth.

Results from Performance of GNNS in Track Classification

Node Classification

- bunch crossing
- Fake: From purely combinatorial collections of hits
- Primary: From Primary Vertex
- Displaced: From Secondary vertices

• Pileup: From additional proton-proton interactions that occur within the same

GNNs Performance: Track Origin Classification (ROC)

• Highly effective in classifying tracks! • Displaced tracks classification AUC: 0.983!

- FPR: proportion of actual negatives that are incorrectly identified as positives
- TPR: proportion of actual positives that are correctly identified

Results from Performance of GNNS in EJ Classification

Graph Classification

 \oplus

 \oplus

 \oplus

QCD Jet

Jet Classification: Probability Distribution

Probability Distribution

- background process!
- EJ probability(GNNScore) distribution.
- be correctly identified!

True EJ

True QCD jet

Probability EJ = 0.9

Probability EJ = 0.2

• Two categories: Signal Jets (EJs) from long lived dark mesons and background Jets from QCD

• Signal jets peaks at last bin suggesting extremely high likelihood for majority of signal jets to

Jet Classification: ROC

- Extremely good classifier with great background rejection while retaining majority of the signal.
- This implies that within a threshold where 80 % of the signal jets are accurately identified, there is a misclassification of 1 jet for every $\sim 10^4$ jets.

GNN in EJ (Run 03) Analysis

Conclusion

• Use of GNNs are very effective in classifying atypical LLP signature- emerging jets.

• Additionally GNNs were also able to perform classification of tracks inside the jet and find of pair of tracks belong to the same vertex.

Backup

ATLAS Detector

Jet cluster

Image: <u>https://arxiv.org/abs/1603.02934</u>

•

GNN generalizations

(a) Full GN block

(c) Message-passing neural network

(b) Independent recurrent block

(d) Non-local neural network

 $\mathbf{J}\mathbf{u}', \mathbf{u}'_{\text{hid}}$

 $\rightarrow V', V'_{\text{hid}}$

 $\rightarrow E', E'_{\text{hid}}$

Internal component of GNNs

 $f(\mathbf{PX}) = \mathbf{P}' f(\mathbf{X})$

GNN Architecture

- Combined input prepared and fed into network architecture (2 jet variables 16 track variables)
- Initial latent representation for each track created. These representations are then used to populate the node features of a fully connected graph network
- Message passing graph neural network's loss function also accounts node and vertex classification loss function.
- After the graph network, the resulting node representations used to predict Track Label (truthOriginLabel), JetLabel (isDisplaced) probability score.
- Architecture based on the ATLAS Flavour tagging software!

Samples Used for Training EJ classifier

QCD Ld40_rho80_pi20_Zp600_I50 Ld10_rho20_pi5_Zp600_l5 Ld10_rho20_pi5_Zp1500_l50 Ld20_rho40_pi10_Zp3000_l50

- Ld = dark confinement scale [GeV]
- rho = mass of rho meson [GeV]
- pi = mass of dark pion [GeV]
- Zp = mass of Z' [GeV]
- I = lifetime [mm]

Jet-Track Inputs

Category	Variable	Description
Jet	p_T	Jet transverse momentum
	η	Signed jet pseudorapidity
Track	d_0	Distances of closest approach be-
		tween the track and beamline in the
		transverse plane
	$z_0 \sin heta$	Closest distance from the track to
		the primary interaction point in the
		transverse plane
	d_{ϕ}	Azimuthal angle of the track, rela-
		tive to the jet ϕ
	$\mathrm{d}\eta$	Pseudorapidity of the track, relative
		to the jet η
	$\frac{q}{p}$	Track charge divided by momentum
		(measure of curvature)
	$\sigma(\phi)$	Uncertainty on track azimuthal an-
		gle ϕ
	$\sigma(heta)$	Uncertainty on track polar angle θ
	$\sigma(\frac{q}{p})$	Uncertainty on $\frac{q}{p}$
	nPixHits	Number of pixel hits
	nSCTHits	Number of SCT hits
	nPixShared	Number of shared pixel hits
	nSCTShared	Number of shared SCT hits
	nPixHoles	Number of pixel holes
	nSCTHoles	Number of SCT holes
	IP3D_signed_d0_significance	Ratio of d_0 and $\sigma(d_0)$ defined for
		both positive and negative scale
		with reference to the primary inter-
		action point.
	IP3D_signed_z0_significance	Ratio of $z_0 \sin(\theta)$ and $\sigma(z_0 \sin(\theta))$
		defined for both positive and neg-
		ative scale with reference to the pri-
		mary interaction point

Input Variables: Jets

- Two jet variables that constitute the basic kinematics of a jet p_T, η
- To avoid avoid kinematic biases for jet tagger, the distributions are "resampled", i.e ensure uniformity in the kinetic distribution!

Input Variables: Tracks

- Most discriminating ones include \bullet
- d_{Ω} : Distances of closest approach between the track - IP3D_signed_d0_significance: Ratio of d_0 and $\sigma(d_0)$ defined for both positive and negative scale with reference to the primary interaction point of the ATLAS detector $-\frac{\gamma}{2}$ Track charge divided by momentum (measure of curvature)

• 16 track variables including track parameters in ATLAS tracking system, detector hits and holes variables, uncertainty in track parameters ... (detailed in backup slides)

Input Distribution (Tracks)

Track Origin Identification: Performance Confusion Matrix

- The diagonal elements of the matrix represent correct classification!
 - Pileups and Displaced tracks most accurately classified
 - ~20k "true" displaced tracks classified as pileups and vice versa!
 - ~16k "true" primary tracks classified as pileups

JetMatrixView

- 40 tracks x 40 tracks confusion matrix

Track ID Based Sort

	2223	2224	2225	2226
2223	1	0	1	0
2224	0	1	0	0
2225	1	0	1	0
2226	0	0	0	1

 Instead of being sorted by trackID's its sorted by truthVertexId of each track • For example {TrackId(VertexId)} in a Jet is {2223(1),2224(3),2225(1),2226(2)}

VertexID Based Sort

	2223	2225	2226	2224
2223	1	1	0	0
2225	1	1	0	0
2226	0	0	0	0
2224	0	0	0	0

Jet View from Classifiers! Use GNN to classify events?

- True labels vs GNN predicted labels visualization for jet, track and vertex prediction
- $n_{trk} \times n_{trk}$ matrix sorted by TruthVertID
 - 1 (Black) if two tracks share the same vertex
 - 0 (White) if two tracks do not share a common vertex

ATLAS Work in progress

performance on real data!

First looks at 2022 data validate GNN